Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Am Soc Mass Spectrom ; 35(4): 767-774, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38431873

RESUMEN

The lanthanide(III) cyanobenzyne complexes (η2-4-CNC6H3)LnCl2- (Ln = La-Lu except Eu; Pm was not examined) were generated in the gas phase using an electrospray ionization mass spectrometry coupled with collision-induced dissociation (CID) technique. For all lanthanides except Sm, Eu, and Yb, (4-CNC6H3)LnCl2- can be generated either via a single-ligand strategy through consecutive CO2 and HCl losses of (4-CNC6H4CO2)LnCl3- or via a dual-ligand strategy through successive CO2/C6H5CN or 4-CNC6H4CO2H and CO2 losses of (4-CNC6H4CO2)2LnCl2-. For Sm and Yb, although only reduction products LnCl3- were formed upon CID of (4-CNC6H4CO2)LnCl3-, (4-CNC6H3)LnCl2- were obtained via the dual-ligand strategy without the appearances of other products. CID of (4-CNC6H4CO2)EuCl3- and (4-CNC6H4CO2)2EuCl2- gave EuCl3- and the cyanophenyl complex (4-CNC6H4)EuCl2-, respectively, in both of which the +III oxidation state of Eu was reduced to +II. Density functional theory (DFT) calculations reveal that (4-CNC6H3)LnCl2- are formally described as Ln(III) cyanobenzyne complexes, (η2-4-CNC6H3)LnCl2-, with the dianionic cyanobenzyne ligand (4-CNC6H32-) coordinating to the Ln(III) centers through two Ln-C σ bonds, which is in accordance with their reactivities toward water. Benzyne and substituted benzyne complexes (XC6H3)LuCl2- (X = H, 3-CN, 4-F, 4-Cl, and 4-CH3) were also synthesized in the gas phase via the single- and dual-ligand strategies.

2.
J Virol ; 97(11): e0113723, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37855619

RESUMEN

IMPORTANCE: The ongoing COVID-19 pandemic has been characterized by the emergence of new SARS-CoV-2 variants including the highly transmissible Omicron XBB sublineages, which have shown significant resistance to neutralizing antibodies (nAbs). This resistance has led to decreased vaccine effectiveness and therefore result in breakthrough infections and reinfections, which continuously threaten public health. To date, almost all available therapeutic nAbs, including those authorized under Emergency Use Authorization nAbs that were previously clinically useful against early strains, have recently been found to be ineffective against newly emerging variants. In this study, we provide a comprehensive structural basis about how the Class 3 nAbs, including 1G11 in this study and noted LY-CoV1404, are evaded by the newly emerged SARS-CoV-2 variants.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Pandemias , Humanos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales , Infección Irruptiva , COVID-19/inmunología , COVID-19/virología
3.
Front Immunol ; 14: 1183859, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404820

RESUMEN

Chronic hepatitis E virus (HEV) infection occurs mainly in immunosuppressed populations. We describe an investigation of chronic HEV infection of genotype 3a in an individual without evidence for immune deficiency who presented hepatitis with significant HEV viremia and viral shedding. We monitored HEV RNA in plasma and stools, and assessed anti-HEV specific immune responses. The patient was without apparent immunodeficiency based on quantified results of white blood cell, lymphocyte, neutrophilic granulocyte, CD3+ T cell, CD4+ T cell, and CD8+ T cell counts and CD4/CD8 ratio, as well as total serum IgG, IgM, and IgA, which were in the normal range. Despite HEV specific cellular response and strong humoral immunity being observed, viral shedding persisted up to 109 IU/mL. After treatment with ribavirin combined with interferon, the indicators of liver function in the patient returned to normal, accompanied by complete suppression and clearance of HEV. These results indicate that HEV chronicity can also occur in individuals without evidence of immunodeficiency.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Síndromes de Inmunodeficiencia , Humanos , Hepatitis E/diagnóstico , Hepatitis E/tratamiento farmacológico , Virus de la Hepatitis E/genética , Linfocitos T CD8-positivos , Relación CD4-CD8 , Linfocitos T CD4-Positivos , Síndromes de Inmunodeficiencia/complicaciones
4.
RSC Adv ; 13(18): 12495-12501, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37091604

RESUMEN

A sulfur monoxide complex of platinum fluoride in the form of PtF2(η1-SO) was generated via the isomerization of a molecular complex Pt(SOF2) in cryogenic matrixes under UV-vis irradiation. The infrared absorptions observed at 1205.4, 619.8 and 594.9 cm-1 are assigned to the S-O, antisymmetric and symmetric F-Pt-F stretching vibrations of the PtF2(η1-SO) complex, which possesses nonplanar Cs symmetry with a singlet ground state according to density functional theory calculations. The experimental vibrational frequency and computed distance (1.449 Å) of the SO ligand indicate that the SO ligand features a positively charged character, which is further confirmed by natural bond orbital analysis and Mayer bond order. Such character is completely different from that for early transition metal-SO complexes and dioxygen complexes of platinum. Formation of the PtF2(η1-SO) complex was found to occur via the consecutive transfer of the two fluorine atoms from SOF2 to Pt in the sulfur bound Pt(SOF2) complex, which involves a series of intermediates on the basis of the mechanism study at the B3LYP level. Although the whole process is hindered by the large energy barrier encountered during the transfer of the first fluorine atom, UV-vis irradiation can provide sufficient energy to surmount this barrier and facilitates the formation of the nonplanar PtF2(η1-SO) complex stabilized in matrix.

5.
Rapid Commun Mass Spectrom ; 37(11): e9512, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36972406

RESUMEN

RATIONALE: Compared with organomagnesium compounds (Grignard reagents), the Grignard-type organolanthanides (III) exhibit several utilizable differences in reactivity. However, the fundamental understanding of Grignard-type organolanthanides (III) is still in its infancy. Decarboxylation of metal carboxylate ions is an effective method to obtain organometallic ions that are well suited for gas-phase investigation using electrospray ionization (ESI) mass spectrometry in combination with density functional theory (DFT) calculations. METHODS: The (RCO2 )LnCl3 - (R = CH3 , Ln = La-Lu except Pm; Ln = La, R = CH3 CH2 , CH2 CH, HCC, C6 H5 , and C6 H11 ) precursor ions were produced in the gas phase via ESI of LnCl3 and RCO2 H or RCO2 Na mixtures in methanol. Collision-induced dissociation (CID) was employed to examine whether the Grignard-type organolanthanide (III) ions RLnCl3 - can be obtained via decarboxylation of lanthanide chloride carboxylate ions (RCO2 )LnCl3 - . DFT calculations can be used to determine the influences of lanthanide center and hydrocarbyl group on the formation of RLnCl3 - . RESULTS: When R = CH3 , CID of (CH3 CO2 )LnCl3 - (Ln = La-Lu except Pm) yielded decarboxylation products (CH3 )LnCl3 - and reduction products LnCl3 ·- with a variation in the relative intensity ratio of (CH3 )LnCl3 - /LnCl3 ·- . The trend is as follows: (CH3 )EuCl3 - /EuCl3 ·- < (CH3 )YbCl3 - /YbCl3 ·- ≈ (CH3 )SmCl3 - /SmCl3 ·- < other (CH3 )LnCl3 - /LnCl3 ·- , which complies with the trend of Ln (III)/Ln (II) reduction potentials in general. When Ln = La and hydrocarbyl groups were varied as CH3 CH2 , CH2 CH, HCC, C6 H5 , and C6 H11 , the fragmentation behaviors of these (RCO2 )LaCl3 - precursor ions were diverse. Except for (C6 H11 CO2 )LaCl3 - , the four remaining (RCO2 )LaCl3 - (R = CH3 CH2 , CH2 CH, HCC, and C6 H5 ) ions all underwent decarboxylation to yield RLaCl3 - . (CH2 CH)LaCl3 - and especially (CH3 CH2 )LaCl3 - are prone to undergo ß-hydride transfer to form LaHCl3 - , whereas (HCC)LaCl3 - and (C6 H5 )LaCl3 - are not. A minor reduction product, LaCl3 ·- , was formed via C6 H5 radical loss of (C6 H5 )LaCl3 - . The relative intensities of RLaCl3 - compared to (RCO2 )LaCl3 - decrease as follows: HCC > CH2 CH > C6 H5 > CH3 > CH3 CH2 >> C6 H11 (not visible). CONCLUSION: A series of Grignard-type organolanthanide (III) ions RLnCl3 - (R = CH3 , Ln = La-Lu except Pm; Ln = La, R = CH3 CH2 , CH2 CH, HCC, and C6 H5 ) were produced from (RCO2 )LnCl3 - via CO2 loss, whereas (C6 H11 )LaCl3 - did not. The experimental and theoretical results suggest that the reduction potentials of Ln (III)/Ln (II) couples as well as the bulkiness and hybridization of hydrocarbyl groups play important roles in promoting or limiting the formation of RLnCl3 - via decarboxylation of (RCO2 )LnCl3 - .

6.
Inorg Chem ; 62(5): 2266-2272, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36689614

RESUMEN

The uranyl(VI) benzyne complex (η2-C6H4)UO2Cl- was prepared in the gas phase by electrospray ionization mass spectrometry coupled with collision-induced dissociation. It was formed via a dual-ligand strategy that requires the elimination of benzoic acid or benzene/CO2 from the uranyl dibenzoate precursor (C6H5CO2)2UO2Cl-. This contrasts the known strategy for the formation of gas-phase benzyne complexes that would result from CO2/HCl elimination from (C6H5CO2)UO2Cl2-, during which only one benzoate ligand is involved. Such dual-ligand strategy can be extended to the preparation of a series of methyl- and halo-substituted benzyne complexes of uranyl(VI). Density functional theory calculations at the B3LYP level reveal that the benzyne complex (η2-C6H4)UO2Cl- features a metallacyclopropene structure with the C6H42- ligand coordinated to uranium(VI) through two polarized U-Cbenzyne σ bonds, in accordance with the reactivity test toward water. Dehydrochlorination of the benzyne complex (η2-C6H4)UO2Cl- from (C6H5)UO2Cl2- that originates from decarboxylation of (C6H5CO2)UO2Cl2- with a single benzoate ligand is neither kinetically nor thermodynamically favorable than simple C6H5 radical loss to give UVO2Cl2-. This arises from the presence of an accessible V oxidation state for uranium and accounts for the necessity for the dual-ligand strategy in the preparation of uranyl(VI) benzyne complexes from uranyl benzoate precursors.

7.
J Am Soc Mass Spectrom ; 33(11): 2181-2190, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36251055

RESUMEN

The fragmentation behaviors of the o-, m-, and p-fluorobenzoate complexes of La3+, Ce3+, Fe3+, Cu2+, and UO22+ were investigated by electrospray ionization mass spectrometry, and the corresponding reaction mechanisms were explored by density functional theory (DFT) calculations. Fluoride transfer product LaIIIFCl3-/CeIIIFCl3- and decarboxylation product LaIIICl3(C6H4F)-/CeIIICl3(C6H4F)- were observed when the carboxylate precursors LaIIICl3(C6H4FCO2)-/CeIIICl3(C6H4FCO2)- were subjected to collision-induced dissociation. The variation in product ratios, which is not obvious in the meta and para cases, qualitatively follows the increasing overall energy barrier and reaction endothermicity of the two-step CO2/C6H4 elimination mechanism, and this aligns with the increase in U-F distance in the ortho, meta, and para decarboxylation product isomers. In contrast, the mass spectra of FeIIICl3(C6H4FCO2)-/CuIICl2(C6H4FCO2)- are dominated by the reduction product FeCl3-/CuCl2- regardless of the fluorobenzoate isomer. DFT/B3LYP calculations show that the two-step CO2/C6H4F elimination pathways are comparable in energy for all three positional isomers. It is energetically more favorable to give the reduction product than the fluoride transfer product, which is opposite to the lanthanum cases. Although the decarboxylation product was observed for all three UVIO2Cl2(C6H4FCO2)- isomers, the ortho isomer behaves more similarly to LaIIICl3(C6H4FCO2)-/CeIIICl3(C6H4FCO2)- as evidenced by the formation of UVIO2FCl2-, and the appearance of UVO2Cl2- in the cases of the meta and para isomers indicates the similarity with FeIIICl3(C6H4FCO2)-/CuIICl2(C6H4FCO2)-. The shorter U-F distance in UVIO2Cl2(o-C6H4F)- causes the decrease in the fluoride transfer barrier and thus makes this process more favorable over o-C6H4F radical loss to give UVO2Cl2-.

8.
J Virol Methods ; 309: 114597, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35932997

RESUMEN

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has become disaster for human society. As the pandemic becomes more regular, we should develop more rapid and accurate detection methods to achieve early diagnosis and treatment. Antigen detection methods based on spike protein has great potential, however, it has not been effectively developed, probably due to the torturing conformational complexity. By utilizing cross-blocking data, we clustered SARS-CoV-2 receptor binding domain (RBD)-specific monoclonal antibodies (mAbs) into 6 clusters. Subsequently, the antigenic sites for representative mAbs were identified by RBDs with designed residue substitutions. The sensitivity and specificity of selected antibody pairs was demonstrated using serial diluted samples of SARS-CoV-2 S protein and SARS-CoV S protein. Furthermore, pseudovirus system was constructed to determine the detection capability against SARS-CoV-2 and SARS-CoV. 6 RBD-specific mAbs, recognizing different antigenic sites, were identified as potential candidates for optimal antibody pairs for detection of SARS-CoV-2 S protein. By considering relative spatial position, accessibility and conservation of corresponding antigenic sites, affinity and the presence of competitive antibodies in clinical samples, 6H7-6G3 was rationally identified as optimal antibody pair for detection of both SARS-CoV-2 and SARS-CoV. Furthermore, our results showed that 6H7 and 6G3 effectively bind to SARS-CoV-2 variants of concern (VOCs). Taken together, we identified 6H7-6G3 antibody pair as a promising rapid antigen diagnostic tool in containing COVID-19 pandemic caused by multiple VOCs. Moreover, our results also provide an important reference in screening of antibody pairs detecting antigens with complex conformation.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , Pandemias , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
9.
Chem Commun (Camb) ; 58(50): 7018-7021, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35638532

RESUMEN

The thorium benzyne complex (η2-C6H4)ThCl3- was synthesized in the gas phase through consecutive decarboxylation and dehydrochlorination from the (C6H5CO2)ThCl4- precursor upon collision-induced dissociation. Theoretical calculations suggest that (η2-C6H4)ThCl3- exhibits a metallacyclopropene structure with two polarized Th-Cbenzyne σ bonds. This procedure can be generally extended to the synthesis of a wide range of gas-phase thorium benzyne complexes.

10.
Cell Rep ; 39(8): 110862, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35594869

RESUMEN

The rapidly spreading Omicron variant is highly resistant to vaccines, convalescent sera, and neutralizing antibodies (nAbs), highlighting the urgent need for potent therapeutic nAbs. Here, a panel of human nAbs from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) convalescent patients show diverse neutralization against Omicron, of which XMA01 and XMA04 maintain nanomolar affinities and excellent neutralization (half maximal inhibitory concentration [IC50]: ∼20 ng/mL). nAb XMA09 shows weak but unattenuated neutralization against all variants of concern (VOCs) as well as SARS-CoV. Structural analysis reveals that the above three antibodies could synergistically bind to the receptor-binding domains (RBDs) of both wild-type and Omicron spikes and defines the critical determinants for nAb-mediated broad neutralizations. Three nAbs confer synergistic neutralization against Omicron, resulting from the inter-antibody interaction between XMA04 and XMA01(or XMA09). Furthermore, the XMA01/XMA04 cocktail provides synergistic protection against Beta and Omicron variant infections in hamsters. In summary, our results provide insights for the rational design of antibody cocktail therapeutics or universal vaccines against Omicron.


Asunto(s)
COVID-19 , Vacunas , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/terapia , Cricetinae , Humanos , Inmunización Pasiva , SARS-CoV-2 , Sueroterapia para COVID-19
11.
Medicine (Baltimore) ; 101(9): e28980, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35244069

RESUMEN

BACKGROUND: Several studies have shown miR-328-3p increased in atrial fibrillation (AF), but some researches indicated no difference or even decreased. This inconsistent result confuses researchers, and it is urgent to know the truth. This study is to assess the association between miR-328-3p levels in plasma/atrial tissue and patients with AF. METHODS: PubMed, EMBASE, Scopus, Web of Science, and ProQuest were searched from inception to February 1, 2021. The standardized mean differences (SMD) with their 95% confidence interval (CI) were calculated to evaluate the association between miR-328-3p levels and AF. RESULTS: Twelve studies met the inclusion criteria and were used for our meta-analysis. Overall, the levels of miR-328-3p were higher in patients with AF than in the control group (SMD = 0.69, 95% CI [0.10, 1.28], P = .022). After adjustment, the overall SMD was 0.82 (95% CI [0.22, 1.42], P = .007). Sensitivity analysis indicated that the results were stable, and the trim-fill analysis showed that the results were credible. Subgroup analyses showed that AF patients, n ≥ 30, various of comorbidity, articles published earlier, and Asia groups had higher levels of expression of miR-328-3p. CONCLUSIONS: High levels of miR-328-3p are significantly associated with an increased risk of AF. It implies that miR-328-3p played an important role in diagnosis and may serve as a potential momentous, and useful biomarker to identify AF.


Asunto(s)
Fibrilación Atrial/genética , MicroARNs/genética , Asia , Fibrilación Atrial/diagnóstico , Biomarcadores/sangre , Humanos , MicroARNs/metabolismo
12.
Chem Commun (Camb) ; 58(16): 2658-2661, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35137751

RESUMEN

A fast and reliable mass spectrometry-based method has been developed to discriminate the positional isomers of o-, m- and p-C6H4XCO2H (X = F, Cl and Br). This is based on the distinct fragmentation patterns of isomeric ThCl4(C6H4XCO2)- ions generated by electrospray ionization of the solutions with C6H4XCO2H isomers and ThCl4. Moreover, the composition of these positional isomers can be conveniently quantified without any pre-treatment according to the proportion of gas-phase fragmentation products.

14.
Phys Chem Chem Phys ; 23(35): 19760-19765, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34524300

RESUMEN

Oxo-sulfido molybdenum/tungsten difluorides in the form of Mo(O)(S)F2 and W(O)(S)F2 were prepared in cryogenic matrices via the reactions of laser-ablated metal atoms and SOF2. Both complexes were characterized to possess one oxo, one sulfido and two fluoro ligands terminally bound to the metal center according to the results of infrared spectroscopy combined with isotopic substitution, and non-planar Cs symmetries with closed shell singlet ground states were established on the basis of density functional calculations. The SMoO and SWO bond angles of Mo(O)(S)F2 and W(O)(S)F2 are around 107°, which are close to those of bent MoO22+ and WO22+ (∼101°). Natural bond orbital calculations indicate the presence of a Mo/W-O double bond in Mo(O)(S)F2 and W(O)(S)F2 while the Mo/W-S bond is better described as a triple bond upon F- coordination to SMoO2+ and SWO2+. UV-Vis irradiation is required in order to form the oxo-sulfido molybdenum/tungsten difluorides when metal atoms react with SOF2 in cryogenic matrices.

15.
Phys Chem Chem Phys ; 23(36): 20073-20079, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34551043

RESUMEN

Uranyl hydride in the form of HUO2Cl2- was prepared upon collision-induced dissociation of (RCO2)UO2Cl2- (R = H, CH3CH2, CH3CH2CH2, CH3CHCH, (CH3)2CH, C5H9, C6H11 and C6H5CH2CH2) in the gas phase. It was found that uranyl hydrides result from alkene and alkyne elimination with concomitant ß-hydride transfer of uranyl alkylides RUO2Cl2- following decarboxylation of the carboxylates with the exception of (HCO2)UO2Cl2-, and formation of HUVIO2Cl2- through alkene/alkyne loss is in competition with neutral ligand loss to give UVO2Cl2-. According to the calculations at the B3LYP level, loss of a neutral ligand is slightly less favorable in the cases of (CH3CH2)UO2Cl2- and (CH3CH2CH2)UO2Cl2-, and the situations of (CH3CHCH)UO2Cl2-, ((CH3)2CH)UO2Cl2-, (C5H9)UO2Cl2-, (C6H11)UO2Cl2- and (C6H5CH2CH2)UO2Cl2- with ß-hydrogen atoms should be similar despite the fact that the yield of uranyl hydride depends on the nature of the ligand. Although no uranyl hydride was observed when ß-hydrogen is not available in the carboxylate precursor, there is no HUO2Cl2- generated from (C6H5CO2)UO2Cl2-, (2-C6H4FCO2)UO2Cl2- and (CH2CHCH2CO2)UO2Cl2- with ß-hydrogen either. This is attributed to the much more favorable formation of UO2Cl2- over HUO2Cl2- as revealed by the B3LYP calculations, which is similar to the absence of HUO2Cl2- in the (CH3CO2)UO2Cl2- case where highly reactive CH2 would be formed.

16.
Dalton Trans ; 50(32): 11300-11306, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34342320

RESUMEN

Sulfur radicals terminally bound to the metal center can be considered as the one-electron reduction products of complexes with terminal sulfido ligands which serve as the reactive sites in enzymes and precursors. However, there is limited information regarding this kind of metal stabilized sulfur radical, which contrasts the more commonly known metal stabilized thiyl radical. In this work, we report the preparation of vanadium, niobium and tantalum radical complexes in the form of M(O)(S)F2 from the reactions of laser-ablated metal atoms and SOF2 in cryogenic matrixes. Combined with the results from infrared spectroscopy and density functional theory calculations, the sulfur ligand in M(O)(S)F2 is characterized to be a terminally bound radical with the unpaired electron located on the sulfur 3p orbital. Besides this radical complex, calculations also predict the existence of MF2(η2-SO) with a side-on SO ligand, but this less stable isomer is not observed as a result of high exothermicity along with its formation from metal atoms and SOF2 that is large enough to overcome the energy barrier towards the occurrence of M(O)(S)F2.

17.
Rapid Commun Mass Spectrom ; 35(19): e9168, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34288173

RESUMEN

RATIONALE: Pyridine-2,6-dicarboxamides (PDCAMs) exhibit a certain extraction ability for tetravalent actinide ions, but quite limited information regarding the structures and reactivities of the corresponding An4+ -PDCAMs complexes is available. Neutral diamides can form multiply charged complexes with lanthanide and actinide cations, which are well suited for gas-phase investigations using electrospray ionization (ESI) mass spectrometry in conjunction with theoretical calculation. METHODS: Binary Th (TMPDCAM)3 4+ /U (TMPDCAM)3 4+ (TMPDCAM = N,N,N',N'-tetramethylpyridine-2,6-dicarboxamide) complexes were generated in the gas phase via ES) of Th (ClO4 )4 /U (ClO4 )4 and TMPDCAM mixtures in acetonitrile; collision-induced dissociation (CID) was employed to reveal their fragmentation behaviors; the structure and bonding were investigated by density functional theory (DFT) calculation. RESULTS: An (TMPDCAM)3 4+ (An = Th and U) tetracations dominated the ESI mass spectra of An (ClO4 )4 and TMPDCAM mixtures in acetonitrile. DFT calculations indicate that the two An (TMPDCAM)3 4+ complexes have C3 geometry, and the bonding analyses demonstrate that the thorium or uranium center interacts with both Ocarbonyl and Npyridine , but the latter is weaker. CID of Th (TMPDCAM)3 4+ generated a series of multiply charged thorium-containing products via bond cleavages of the TMPDCAM ligand, whereas U (TMPDCAM)3 4+ yielded only oxygen extraction product UO (TMPDCAM)2+ and hydrolysis product UO (OH)+ . CONCLUSION: An4+ (An = Th and U) can form stable tetrapositive complexes in the gas phase on coordination of three neutral TMPDCAM ligands. The structure and bonding analyses indicate that the two An (TMPDCAM)3 4+ complexes possess twisted tricapped trigonal prismatic geometry and the An4+ centers are coordinated by six Ocarbonyl and three Npyridine atoms while the interactions between An4+ and Ocarbonyl are stronger. The fragmentation chemistry of Th (TMPDCAM)3 4+ and U (TMPDCAM)3 4+ is quite different from each other, which reveals that the gas-phase chemistry of quadruply charged actinide-diamide complexes is affected by the metal centers with distinct properties.

18.
Dalton Trans ; 50(11): 3797-3800, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33720234

RESUMEN

Although luminescent lanthanide-containing molecular complexes are well-known, it is not the case for La3+ with no 4f or 5d electrons, and the few luminescent complexes of La3+ contain luminescent ligands. Herein, we report an unexpected photoluminescence phenomenon of the LaI3(THF)4 complex that was easily prepared by immersing commercial anhydrous LaI3 in THF. Strong blue emission was observed when LaI3(THF)4 was subjected to UV irradiation at 254 nm, which contrasts the non-luminescence character of either LaI3 or THF. The absolute emission quantum yield was determined to be 50.5%. The observed luminescence of LaI3(THF)4 results from metal-to-ligand charge transition (MLCT) which differs from the known charge transition types for lanthanum complexes according to DFT/TDDFT calculations. The photoluminescence of LaI3 can be switched on and off by reversible THF association and dissociation. THF concentrations as low as 0.1 vol% in n-hexane and 0.5 vol% in the gas phase can be detected, indicating the capability of anhydrous LaI3 as a sensor for convenient and rapid THF detection.

19.
J Am Soc Mass Spectrom ; 32(3): 700-706, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33522808

RESUMEN

Gas-phase tetrapositively charged M(HMNTA)24+ (M = Zr, Hf, Th, and U) ions were generated via electrospray ionization of the M(ClO4)4 and N,N,N',N',N″,N″-hexamethylnitrilotriacetamide (HMNTA) mixtures in acetonitrile. In these complexes, the Zr4+, Hf4+, Th4+, and U4+ metal centers are coordinated by two neutral HMNTA ligands forming antitriangular prism geometry on the basis of DFT calculations. Bonding analysis reveals that the M4+ center is stabilized by six carbonyl oxygen atoms, while the interactions between M4+ and two central amine nitrogen atoms are negligible. This is further confirmed by the calculation results of two tetrapositive model complexes without either central amine nitrogen or carbonyl oxygen atoms, indicating the central nitrogen atom of HMNTA is not necessary in forming tetrapositive metal complexes that can be stabilized in gas phase. Collision-induced dissociation of Zr(HMNTA)24+, Hf(HMNTA)24+, and Th(HMNTA)24+ shows the formation of similar charge reducing products with the oxidation state of metal retaining IV whereas ions with other oxidation states were observed for the fragmentation products of U(HMNTA)24+.

20.
J Phys Chem B ; 125(6): 1640-1646, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33533620

RESUMEN

The structures of thorium fluoride and oxyfluoride ions in molten FLiBe-ThF4 and FLiNaK-ThF4 were investigated by Raman spectroscopy and density functional theory calculations. Thorium fluorides are present in the form of ThF62- (Oh) and ThF73- (C2v) in molten FLiNaK-ThF4. Similar speciation was identified in FLiBe-ThF4, and the thorium fluoride anions are in equilibrium with free F- ions and beryllium fluoride anions, which are responsible for the red shift of the beryllium fluoride bands in the Raman spectra. With the addition of Li2O into the FLiNaK-ThF4 and FLiBe-ThF4 melts, the Th2OF104- anion with a linear Th-O-Th geometry was formed at the expense of thorium fluoride anions. The beryllium fluoride bands in the Raman spectra of FLiBe-ThF4 exhibit a blue shift upon Th2OF104- formation, which results from the release of free F- ions that can further react with beryllium fluoride. Insoluble thorium oxides were found in the FLiNaK and FLiBe melts at a Li2O concentration of 15 mol %, and the Th2OF104- anion is, therefore, a bridge connecting the soluble thorium fluorides and insoluble thorium oxides in molten fluorides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...